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Abstract

The influence of the longitudinally non-uniform zeta potential on processes in capillary zone electrophoresis was
studied. The velocity field of the electroosmotic flow in capillary tubes is modelled by the Navier—Stokes equations.
Their stationary solution represents convective transport of a solute which is taken into account in the continuity
equation for the concentration distribution. All equations are studied numerically. The results represent the time
evolution of initial forms of sample peaks. These are presented in graphical form for several cases of zeta potentials
which are either instructive or closely related to situations encountered in practice. It is shown that plug-like flow in
the capillary cannot be expected and that a non-uniform zeta potential generally leads to significant dispersion of

peaks.

1. Introduction

One of the most important phenomena accom-
panying the separation process in capillary zone
electrophoresis (CZE) is the electroosmotic flow
(EOF). This flow can be easily explained by
invoking the electric double layer. Of all the
possible reasons for its formation, the following
two are worth mentioning: the specific adsorp-
tion of charged ionic species and protolysis of
dissociable groups on the inner surface of the
separation column. Since the net charge density
p in the diffusion part of the double layer differs
significantly from zero, an applied longitudinal
electric field of strength E exerts the volume
force Ep on the diffusion layer. As a conse-
quence, the diffusion layer moves and owing to
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viscosity forces this movement is propagated to
the rest of the liquid in the column.

In the description of the process, the electric
potential & can be substituted for the net charge
density p. The Poisson and Boltzmann equations
provide relationships among p and @ [1]. In this
paper, it is the value of the potential ¢ on the
wall-liquid interface which will be used to char-
acterize the process. This function is called the
zeta potential and is usually denoted by ¢{.

Many papers have dealt with the problem of
EOF under the assumption that { does not
depend on the coordinate running along the
longitudinal axis of the capillary [2-7]. A conclu-
sion drawn from above-mentioned papers is that
EOF generally has little influence on the ef-
ficiency in CZE when the driving electroosmotic
force is uniform along the column.

Cases in which any of the quantities involved,
¢.g., the zeta potential ¢ or the longitudinal field
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E, are supposed to vary along the axis of the
capillary are treated only occasionally. However,

there are various reasons for the assumption of

an axially non-uniform zeta potential. These can
be both intentional ones caused by a chemical
treatment of the inner surtface of the capillary
and casual ones caused by a reaction and/or an
adsorption of a solute [8] at the interface.

Anderson and Idol [9] have studied the
stationary flow pattern in a capillary under the
influence of a zeta potential. which is a periodic
non-uniform function of the axial variable. As
governing equations of the flow they have taken
the Stokes equations. i.c.. the Navier-Stokes
equations in which convective terms are neg-
lected. Relations for fluid velocity have been
derived by means of Fourier serics expansion
and, moreover. an cquation for the mean fluid
velocity has been presented.

Chien and Helmer [10] have proposed a model
to calculate the average clectroosmotic velocity
and the variance of sample peaks in field-am-
plified capillary electrophoresis, using a capillary
column filled with two different concentrations
of the same buffer. Thus. in their analysis, it is
the field strength that appears to have a non-
uniform distribution along the column. They
realized that the radial velocity profile in parts
with different concentrations has a parabolic
shape and showed that the difference between
the local electroosmotic velocities in both parts
of the column and the mcan velocity contributes
to the dispersion of a solute in accordance with
the Golay equation.

Towns and Regnier [11] have described how
partial coverage of the inner surface of the
column by adsorption of a protein leads to the
mismatch between local and bulk electroosmotic
velocity and consequently to a decrease in et-
ficiency of separation.

Nowadays, attempts are made to use a radial
electric potential across a capillary wall for a
direct control of the zeta potential [12,13]. In the
experimental equipment the radial electric po-
tential is applied over a part but not the entire
length of the column. Although experimental
observations have been reported [14.15] indicat-
ing that the dispersion of peaks in this case does
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not satisfy the conclusions of Chien and Helmer,
probably owing to surface conductivity, at least a
gradual change in the axial distribution of the
zeta potential [15] should be expected.

In this work, our aim was to study the migra-
tion of a solute in electrophoretic columns under
the joint influence of the electrophoretic flux and
convective transport through the electroosmotic
flow caused by a longitudinally inhomogeneous
zeta potential. A model is adopted in which the
flow pattern in the column is found as a station-
ary solution of the Navier-Stokes equations with
boundary conditions which depend on a given
zeta potential. This stationary solution of the
Navier—-Stokes equations is found numerically.
Another numerical procedure provides the con-
centration distribution of the solute as a function
of two spatial variables and time. Results of
simulations are given and commented on for
three different distributions of zeta potential. It
is concluded that the axially non-uniform zeta
potential generally leads to dispersion of sample
peaks and, sometimes, a noticeable radial distor-
tion of the peak should be expected. In par-
ticular., the classical plug-like electroosmotic flow
cannot be expected in cases where axial homo-
geneity of some quantities no longer holds.

2. Theory

We shall deal with a capillary column of radius
a and finite length L. It will be assumed that
[. >>a and that all flows and fluxes and also the
concentration distribution will be rotationally
symmetrical.

2.1. Velocity field in the column

The velocity vector, U, is equal to a two-
dimensional vector (v, v,), which consists of v,
the axial, and v,. the radial velocity component.
Each component of the velocity vector depends
on the axial coordinate x, the radial coordinate r
and time r. The governing equations for the
velocity ¢ are the Navier—Stokes cquations in
which, with a view to rotational symmetry of the
process. cylindrical variables will be used.
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As the fluid is viscous, the boundary condition
on the wall-liquid interface should be that the
velocity is equal to zero and the volume force
Ep, from which the EOF stems, should occur in
the Navier-Stokes equations. In this paper, for
simplicity the fluid velocity on the column wall
will be set to equal the electroosmotic plug
velocity determined by the Helmholtz—
Smoluchowski equation and, consequently, the
volume force Ep does not appear in the equa-
tions governing the flow. This approximation was
also used by other workers [9-11,16] and can be
well accepted in most real instances when the
thickness of the diffusion layer is much less then
the inner diameter of the capillary column. Thus,
the apparent electroosmotic velocity v(x) at a
point at the column wall with longitudinal
coordinate x will be

o) =— = () (1)

where ¢ is the permitivity of the liquid, E is the
driving electric field strength, {(x) is the zeta
potential, dependent on the axial x coordinate.
and 7 is the dynamic viscosity of the liquid. In
this paper it is further assumed for simplicity that
the driving electric field is a constant vector
parallel to the axis of the capillary.

The acceptance of the approximation used.
Eq. 1. is well supported by Tikhomolova [6],
who analytically calculated the time development
of the electroosmotic velocity profile in the
cylindrical column. Her results show that the
velocity at the inner edge of the diffusion layer
acquires the Helmholtz—Smoluchowski value
—eE{/n in a very short time even when the rest
of the liquid is still not moving.

As the double layer is neglected, it is possible
to express the boundary condition on the capil-
lary wall for the axial velocity component in the
form

§%)
—

v (x, a, t)=v(x) (

where v(x) is given by Eq. 1.

The velocity field and the function p = p(x, r.
t), describing pressure. satisfy the Navier—Stokes
equations for incompressible fluid, which are
considered in the domain x € {0, L). r€{0. a}.

1€ (0, *) and can be be given in the following
form [17]:

o, (ivx+ v,
at U ax TV oy
v, 1 8 [ dv, 1 @
:V[ 3+—~—(r- )]——-—p 3)
ax- r or or Py OXx
ov, au, av,
+v v

4)

+—-.;(rv =0 (5)

where v =mn/p,, is the kinematic viscosity and py
is the mass density of the liquid. It will be
assumed that the fluid is at rest at time ¢ = 0, and
therefore

v (x.r,0)=0, v (x,r,0)=0 (6)
On the capillary wall, the axial velocity is

prescribed and the radial velocity must be equal
to zero, i.e.

vix.a, t)=v(x), v(x.a,)=0 (7)

On the axis of the capillary, the components of
the velocity satisfy these geometrical conditions:

v,

» x.0,0)=0, v(x,0,1)=0 (8)
[¢
It is assumed that both ends of the capillary are
under constant pressure and, moreover, there is
no difference between these pressures, i.€.,

plOr.)y=p . pL,r,t)=py 9)

where p, and p, are constants for which p, =
py- If all significant changes occur in the area far
from both ends of the capillary, it is acceptable
to formulate the boundary conditions at the ends
in the form

N
0.0 =0, 0,0.r,0=0 (10)
Jdu,

L =0, v(L.r.)=0 (11)

The second and third terms in Eqs. 3 and 4 are
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convective terms which bring non-linearity into
the Navier-Stokes equations. The Reynolds
number Re, used to assess the significance of the
convective terms, is defined for the case of flow
in a cylindrical tube as Re = av,p,,/n, where v, is
a characteristic velocity. The convective terms
could be neglected if Re << 1. Under the con-
ditions that are typical of EOF in CZE, v, =1
mm s ', a=~100 um. py =1000 kg m * and
1 =0.001 Pa s, so Re=0.1. This means that the
convective terms might play a certain role in the
capillary flow in CZE and were taken into
account by using the Navier—-Stokes equations.
It is obvious that the solution of the described
system of equations depends on the function
v(x). With time increasing. this solution con-
verges to a time-independent solution. A nu-
merical procedure will be used to obtain an
approximation to this stationary velocity field.

2.2. Concentration distribution
Once the velocity field is known, the con-

centration distribution of a solute, c(x, r, t), can
be calculated by solving the continuity equation

ED[83C+1 i( dc”
ar ~ Lo o ar \"ar,

dac ac

= . 7
Uax Uy sena) oy (12)

with the initial condition

clx,r,0)=c,(x,r) (13)

and the boundary conditions consisting of a
condition on the capillary wall given by

ac

E(x.a, 1)y=0 (14)
a geometrical condition on the capillary axis
given by

ac
;(x,(). Hn=40 (15)

and the following conditions in the ends of the
capillary:
cO,r.ty=c, . c(L.r.t)y=cq (16)

Here. D is the diffusion coefficient, u is the

electrophoretic mobility of the solute and z is its
charge number. It is seen that the continuity Eq.
12 takes several fluxes into account, namely the
diffusional flux (the first term on the right-hand
side), the flow in the electroosmotic velocity field
(the second and third terms) and the electro-
phoretic flux (the fourth term). The electropho-
retic flux is the movement of a solute with the
velocity v,, = sgn(z)uE only in the axial direction
due to the Coulombic force acting on possibly
charged particles of the solute.
It will be assumed that

¢, =cg=0 (17)

The initial concentration distribution described
by function c,(x,r) must satisfy all boundary
conditions. Since in this paper the function
cy(x, r) will have the form c,(x), i.e., it does not
depend on the radial variable r, we shall assume
that

¢y(0)=¢,(L)=0 (18)

In problems of movement of a solute along a
tube, the mean radial concentration ¢, is a
useful quantity:

2 u
Calx, 1) = e J; c(x, r.H)rdr (19)

The dispersion () will be defined in analogy
with the dispersion of ¢, in the unbounded
capillary by

1
Cioit)

where w(f), the mean x-coordinate of the solute,
s

P 0= | ealr 0l p@Pac 0)

1 L
pl0) = | ente 1 (21)
and
eo(t) =]( e (x, 1) dx (22)

The mean velocity of the convective flow in the
capillary tube, v, is defined by
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aQ

vm(t)=%J-0 v,(x.r. t)rdr (23)

This value, due to the condition of incompres-
sibility, does not depend on the variable x. With
the time increasing, v (f) converges to a station-
ary value. This value will be referred to as the
stationary mean velocity. In cases when both
convective flow and electrophoretic flux act to-
gether, the solute moves at the velocity v, + v, .

There have been several studies of the time
development of a solute concentration (or, at
least, dispersion of a solute) under the influence
of various types of flows in tubes. A stationary
velocity field with parabolic profile has been
considered [18-22] and the electroosmotic ve-
locity profile encountered in stationary EOF with
zeta potential uniform along the capillary tube
has been investigated [3.4,7].

Using the Stokes equations, Anderson and
Idol [9] derived that the stationary mean ve-
locity, v, attains the value given by

1 1.

Um:f 0

v(x)dx (24)
For the sake of completeness, it is shown in the
Appendix how Eq. 24 can be obtained through a
simple computation with the Stokes equations. If
the Navier—Stokes equations are used, Eq. 24 is
not exactly valid. However, only a small devia-
tion of the stationary mean velocity from the
value given by Eq. 24 can be expected. This is
what has been confirmed by numerical simula-
tions.

3. Methods of solution

The Navier—Stokes Eqs. 3-5 were transform-
ed into a system of partial differential equations
for a pair of functions, ¢ and £ [23]. The stream
function ¢, provides the velocity components
through the equations

) 1 o
LA L 25)

X dor ’ r r  ox

|
v, =—
r

The vorticity of the velocity field. &. is given by

auv, du,
=% o (26)

The functions ¢ and ¢ satisfy the following
system:

0& o€ aé v €
E+Ux-a+vr~3—— ’
_ feE 19 ._a_f)_,é]
_V[axzd‘_r'ar <r ar r’ (27)
(L 8y
(u'3+r'(9r(r'6r)-_r§ (28)

The conditions to which the function ¢ is subject
consist of an initial condition

&x.r.0)=0 (29)

and the boundary conditions

Jd (1 o
e act)=—— (7'a—lf>(x, a,t),
£x.0,1)=0 (30)
aé J
3;((). r.t)y=0, a—ﬁ(L,r, t)=0 (31)

The boundary conditions for s are

dlx,a. t)=x({), Y, 0,6)=0 (32)
¢ ay
= (0.7 1)=0, —(,E"(L, r,t)=0 (33)

where the function x(¢) is a function which
depends on only one variable, ¢, and satisfies the
rclationship

L-%(:): —vafo‘ £(x, a, 1) dt

fl_ sz( aUX %) dr dx 34
-, [,\”x'ax”r ar Jrar (34)

Finite difference methods were used to solve the
Navier-Stokes equations and the parabolic equa-
tion for the concentration of a solute. With a
Reynolds number of moderate value, we were
able to apply all methods [17,23,24] in a straight-
forward and standard manner.
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4. Results and discussion

The mathematical model described above en-
ables one to calculate a velocity field and peak
shapes of a solute for arbitrary axial distributions
of the zeta potential. We shall discuss several
instances of such forms of the zeta potential
which are either instructive or closely related to
situations encountered in practice. In all simula-
tions, the liquid is meant to be water with
dynamic viscosity 7 =0.001 Pa s and mass den-
sity density p,, = 1000 kg m "’

4.1. Half-covered capillary column

A capillary column is considered in which the
right half is covered by a deactivation layer. The
consequence is that, except for a transition
region around the centre of the capillary. the
zeta potential is constant and equals zero in the
right part of the capillary and a non-zero value in
the left-hand side of the capillary.

Various widths of the transition region be-
tween the covered and uncovered parts of the
capillary are modelled by taking three functions
{(x) with various steepness in the transient
region. These functions, playing the role of the
input boundary conditions, are depicted in Fig.
la as curves 1, 2 and 3. All these functions arc
such that the local electroosmotic velocity gener-
ated by the value of the zeta potential at the left
end of the capillary is | mm s~ ' and that at the
right end is zero.

The corresponding stationary velocity ficlds
obtained by solving Egs. 3-11 for a capillary
with an inner diameter of 100 um (a =50-10""°
m) are shown in Fig. 1b for all three cases of
v(x). In this and all analogous figures the radial
size of the capillary is considerably enlarged and
so the radial velocity component has also been
magnified in the same ratio. The vectors of the
velocity are depicted as “weathercocks™ stream-
ing in the flow. The lengths of lines attached to
the depicted points are proportional to the
magnitude of the velocity. It is seen that a radial
component of the velocity appears mainly in the
transient region. At a distance a few diameters
trom the transient region the radial flows are

negligible and the axial component of the ve-
locity field has an almost parabolic profile. In the
left part of the column the axial component of
the velocity is maximum at the column wall and
nearly zero on the axis whereas in the right part
of the column the situation is the opposite, i.e.
the maximum velocity is on the axis and zero at
the wall.

We shall investigate the time development of a
Gaussian peak of a solute with a diffusion
coefficient 1- 107" m* s~ ', the centre of which is
at a position x =8 mm in the capillary tube, its
initial variance is o) =2.5-10"7 m’ and its
concentration in the maximum is 4 mol m > (4
mM ). The initial axial distribution of the solute
is depicted in Fig. la. The initial condition, Eq.
13, is

(x - 0.008)2]

35
2.25-1077 (35)

colx,r)=4 exp[—

In fact, this function satisfies the boundary
conditions given by Eqs. 18 only approximately,
but the small difference can be neglected. It will
be assumed for simplicity that the solute has no
clectric charge, i.e., u=0 and consequently
v, = 0 in this case.

Numerically solving Eqgs. 12-18 gives the con-
centration distribution c(x, r,¢). The mean ve-
locity v, calculated with the aid of Eq. 24 is 0.5
mm s ', whereas v, obtained from the move-
ment of the simulated peak of the solute is about
0.49 mm s~ ' for all three cases. This indicates a
slight influence of convective terms in the
Navier—Stokes equations.

The time-dependent variance of the solute
calculated by Eq. 20 is depicted in Fig. 1c for all
three cases of v. The mean velocity v, is almost
the same in all three cases but the corresponding
dispersion of a passing solute peak depends
considerably on the course of the function v. The
less steep the function v(x) in the transient
region, the smaller is the resulting value of the
solute variance. In the situation described, the
main cause of the peak dispersion is due to the
parabolic profile of the axial velocity component,
which dominates over the radial component. In
accordance with Chien and Helmer’s considera-
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Fig. 1. Simulation of the stationary velocity field in a half-covered capillary column. Diffusion coefficient D, 1-107"" m* s™';
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radius of column a. 30-10 " m: length of column L. 0.05 m: electrophoretic velocity v,,. 0. ¢, =Initial condition, Eq. 35.
1-3 = Three different cases corresponding to three profiles of the electroosmotic velocity v(x) at the column wall. Dashed

line = time-dependent variance of convective diffusion in a laminar parabolic flow with the velocity of 0.5 mm s~

'. (a) Initial

condition and boundary conditions: {b) velocity fields: (c) and (d) simulated time-dependent variance.

tions [10]. it is the difference between the
“focal” and mean velocity which contributes
mainly to the peak broadening. The term ‘“local™
velocity means the velocity v at the site of the
peak. but it should be realized that the peak has
a certain axial width, so there is no uniqueness in
the determination of the local velocity.

In the parts of the column outside the tran-
sient region. the difference between the velocity

v and the mean velocity given by Eq. 24 is
v, = =0.5 mm s ' For comparison, a dashed
line with the slope v},a’/24D is drawn in Fig. 1c
and d, which corresponds to a laminar parabolic
flow with a velocity of 0.5 mm s~ '
Additionally, it is worth noting that the simu-
lated curves start with almost zero slope at time
t = 0. but after a few seconds the slope stabilizes

to a value which is near to that predicted by
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vi,a /124D, The part of Fig. lc around =10 1s
enlarged and shown in Fig. 1d. This result can be
viewed in the context of the conclusions in the
paper by Gill and Sankarasubramanian [22]. For
the case of unsteady convective diffusion in the
laminar flow, they calculated that the slope of
variance stabilizes at time r=~0.2a"/D. In our
case this value is 5 s, which corresponds well
with the simulated case.

A solute peak exhibits interesting changes in
its radial and axial profiles when passing through
the transient region. These changes are especial-
ly profound when, roughly, the velocity of the
axial movement of the solute is comparable to
the speed of the radial diffusion flux. In typical
CZE conditions this can happen in rather thick
columns or in the case of a low diffusion coeffi-
cient of the solute. Fig. 2a shows both the axial
and radial profiles of an analyte with diffusion
coefficient 5-107"" m* s ' (this would corre-
spond, e.g., to the diffusion coefficient of conal-
bumin) in a column of 150 um 1.D. passing
through the transient region depicted as curve |
in Fig. 1a. The curves in Fig. 2a come from the
solutions to the Eqs. 12-18. The mean radial
concentration profile ¢ at various times is given
by the thick line. In Fig. 2b a time record is
depicted which would be recorded by a detector
located at a position just behind the transient
region. In spite of peculiar changes in the axial
and radical peak profiles. the time record is only
a simple tailing profile.

4.2. Partly-covered capillary column

In this example. a scgment of the capillary
column a part of which, say one third or two
thirds is covered by a layer hindering the forma-
tion of a non-zero zeta potential. Fig. 3a illus-
trates the corresponding functions v(x), i.e., the
distribution of the electroosmotic velocity along
the column. Although this case is a slight
generalization of the previous half-and-half case,
the flow pattern of the velocity field is different
because significant vortices in the flow may
appear. Fig. 3b shows a plot of the calculated
velocity fields in both cases. The “weathercocks™
directing to the left indicate the appearance of

vortices. Nevertheless, it should be realized that
the mean flow of the liquid directs to the right in
both cases with a mean velocity of about 1/3 or
2/3mms ', respectively.

4.3. Partly uncovered capillary column at the
detector position

Capillary columns with an inner coating sup-
pressing the EOF are often used. The columns
are also always coated from the outer side by a
polymer coating. As the outer polymer coating is
UV absorbing, it is necessary to remove it at the
site of the UV absorption detector. This is often
done by means of a flame which burns off the
polymer coating in the region of the capillary
where the detector will be located. However, the
inner coating will also be destroyed by this
procedure. Such a situation can cause severe
problems from the point of dispersion of the
passing solute due to the EOF occurring in the
uncovered region. This situation is stimulated in
a 5-cm segment of a covered capillary column, 1
cm of which is uncovered. The detector is
situated in the middle of the uncovered part. Fig.
4a shows the function v(x) and Fig. 4b the
calculated velocity field in the capillary of 100
wm [.D. The closed vortices in the velocity field
are cvident.

An initial Gaussian peak of a solute with a
diffusion coefficient of 2-107'" m* s~' will be
assumed to move in the column. The centre of
its initial position will again be at x =8 mm and
its initial variance will be o, =2.5-10"" m®. The
mean velocity v, of the flow in the capillary
according to Eq. 24 is 0.2 mm s '. Now it is
assumed that the solute has an electric charge
causing its migration in the electric field with an
clectrophoretic velocity v,, =0.5 mm s”'. The
total velocity of the movement of the solute in
the column will therefore be v, +v,, =0.7 mm
s '. Fig. 4c shows a plot of o’ against time.
There is apparently a significant total increase in
the solute dispersion while the peak is passing
through the uncovered region of the capillary.
However, rather than knowing the dispersion
changing with time, one may be interested in the
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Fig. 2. Simulation of the peak profiles at various times ¢ in a half-covered capillary column. Diffusion coefficient D, 5- 107" 'm
s 't radius of column a. 75-10 °

m: length of column L. 0.05 m: electrophoretic velocity v,,. 0. Thick line = mean axial
concentration, ¢ . {(a) Axial and radial profiles of the peak: (b) time record of a detector located at x = 0.03 m.

signal of a detector at a given position. Hence, in
Fig. 4d a time record of the mean concentration
of the solute is presented for a time range large
enough to enable the peak to pass the detector.

The graph exhibits an asymmetric shape due to
severe dispersion during its passage through the
detector.

Finally. it should be realized that the widths of

59
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Fig. 3. Simulation of the stationary velocity field in a partly
covered capillary column. Radius of column a. 50 10" m;
length of column L. 0.05 m; 4 and 5= two different cases
corresponding to two profiles of the electroosmotic velocity
v(x) at the column wall. (a) Boundary conditions; (b} velocity
fields.

peaks in CZE are mostly much greater than the
radius of the columns and, in the considered
cases of a non-uniformly distributed zeta po-

tential, the radial profile of the axial velocity is
approximately parabolic. This brings the main
contribution to the overall peak shape and its
dispersion and, consequently, the well estab-
lished theory of convective diffusion in laminar
flow can be employed with good precision.

The contribution of the radial flow in transient
regions and the convective terms are compara-
tively less significant. Nevertheless, many more
extreme situations can be found where the use of
the present model will be necessary.

5. Appendix

Here we derive Eq. 24, as we believe, in a
simpler and more straightforward manner than
in Ref. [9]. If non-linear terms in the Navier—
Stokes equations are left out, the Stokes equa-
tions are obtained. Hence, by Eq. 3 the equation
for the component v, of the stationary solution
U(x, r) of the Stokes equations is

%

0= Xy 1 a7 avx)
'V'axz " 8rkr ar

_19
p ox

This equation is multiplied by r and integrated
over any domain x € (0, L), r€(0, o), o €(0,
a). By applying integration by parts and taking
the boundary conditions into account, the first
and third terms on the right-hand side are shown
to be zero. Hence the relationship reduces to

[ 2 2oans
o Jo or " ar g B

This provides

f‘l —o
o . or (x,o)dx=

from which it is obtained immediately that the
function r— [ v (x, r) dx is constant in the
interval (0, a). Hence, according to the bound-
ary condition Eq. 2, for every r € (0, @) it holds
that

fnl‘ v, (x,rydx = f“L v(x) dx
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Fig. 4. Simulation of the stationary velocity field in a partly uncovered capillary column. Diffusion coefficient D, 210~ “mPs
radius of column a, 50- 10 ° m: length of column L. 0.05 m: electrophoretic velocity Uepr 0.5 mm s”'. ¢, = Initial condition, Eq.
35. 6 = Profile of the electroosmotic velocity v(x) at the column wall. (a) Initial condition and boundary conditions; (b) velocity
field; (c) simulated time-dependent variance; (d) time record of a detector located at x = 0.02 m.
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